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given in Parts I and II. The nomenclature, figures, and
references are listed in the parts in which they are used, so
that each part can be read without referring to the other parts

of this report. However, the same notation is used throughout.



SUMMARY

The present investigation is concerned with the general
instability of elastic cylindrical shells. Nonlinear finite-
deflection theory is employed throughout in the analysis.

The nonlinearity is due to the inclusion of second-order terms
in the strain-displacement relations. The linear theory is
the limiting case when the deflection is very small.

The investigation is divided into five parts. The first
of these is concerned with the postbuckling behavior of thin
pressurized cylinders subject to bending or compression. In
the second part the effects of imperfections of pressurized
cylinders under compression are consideréd. The third part
is concerned with the stability of ring-stiffened cylindrical
shells under internal pressure and axial compression or
bending.» The fourth part deals with the problem of buckling
of a ring-stiffened shell subjected to external pressure; and,
in the fifth, the effect of surface shear on buckling of
cylindrical shells is observed upon examining the compatibility
equation and equilibrium equation.

Solutions for Parts I, II, and III were obtained by
using the Galerkin method. The method of minimum potential

energy was employed in Part IV. Numerical solutions are
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PART I

ELASTIC INSTABILITY OF PRESSURIZED CYLINDRXCAL SHELLS
UNDER COMPRESSION OR BENDING

Introduction

The postbuckling behavior of cylindrical shells subject
to axial compression has been studied by several investigators.
Donnell [I-l] first derived the governing finite-deflection
equations; later, in 1941, these equations were used by von Karman
and Tsien [I-Z] to obtain an approximate solution to the problem
of buckling of an axially compressed cylinder into a diamond-
shaped buckle pattern. Further investigation was made by
Kempner {1—3] who used an additional parameter in the buckling
deflection function proposed in [I-2] . Several variations
of these analyses have been proposed by other investigators.

The increase in stability of internally pressurized
cylindrical shells subject to axisymmetric loading was
studied by Lo, Crate, and Schwartz [1-4] . They used large-
deflection theory and found that the critical stress increases
from a value of 0.37 Et/R at zero pressure to 0.606 Et/R
(i.e., the value given by classical small-deflection theory)
as the pressure increases to 0.2 Et2/R2. The effect of internal
pressurization on stability of axially compressed cylinders was
studied by Thielemann [1-5] . In addition to presenting a

finite-deflection theory, he also conducted tests on aluminum
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shells. All the aforementioned analytical solutions were
obtained on the basis of the energy criterion.

Seide [1—6] has presented a linear small-deflection analysis
of the buckling of cylindrical shells subject to pure bending.
This study indicated that, céntrary to the commonly accepted
value, the maximum critical bending stress is for all practical
purposes equal to the critical stress found for axial compression.
This result, based upon small-deflection theory, does not offer
any explanation of the experiment al differences known to exist
for these two situations. For example, experimental evidence
due to Suer, Harris, Skene, and Benjamin [I-?] indicates buckling
loads in bending to be from 25 to 60 per cent greater than in
compression, the exact value depending upon the ratio R/t.

This part of the report is a study of the elastic post-
buckling behavior of thin pressurized cylinders subject to bending
loads. Throughout this analysis, the Galerkin method is employed.
For comparison with certain existing results obtained by using the
energy method, a solution for shells subject to axisymmetric
compression is reached first. For this case, when the pressure
parameter pRz/Et2 approaches unity, it is found that the solution
is the same as the classical small-deflection solution.

The relation of the critical stress to internal pressure

has been found. For this purpose it is convenient to introduce
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as a parameter the ratio between the increment of critical
stress and the critical stress at zero pressure. This parameter
will be essentially independent of the imperfections in the
shell when the imperfections do not vary significantly due to
changes in pressure. Finally, experimental data due to Suer,
Harris, Skene, and Benjamin [I—?] are compared with the results

of the present analysis.

Nomenclature
D Flexural rigidity Et3/12(l —7)2)
E Young's modulus
F Airy stress function
R Radius of middle surface of shell
m, n Number of waves in axial and

circumferential directions, respectively

‘p : Internal pressure
t Wall thickness of shell ‘
w Radial deflection
X, S . . Co-ordinates of a point in the middle

surface of the shell, measured in the
longitudinal and circumferential
directions respectively

x R/tm>
7 by/tec
Vot nz/m2

Poisson's ratio, Y = 0.3 in present
study

<
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Subscripts:
b

cr

o

4
Dimensionless stress parameters
Axial compressive stresses

Laplace operator

(v?) 2

Bending
Critical condition

No pressure

Basic Equations and Deflection Function

For an initially perfect thin cylindrical shell the com-

patibility and equilibrium equations can be expressed,

respectively, as

vi'F_E

28w~ \?
?x35>—'

[(

D 3 . L %~
Ix* 38’ R 3% ] =0 (-1
' A F D
tl 25 ‘ax‘—-z‘px?s IX35 -+
2 a,
IF Y »
3 x* Ds*]‘f‘P:O (1-2)
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In the above equations, F is the Airy stress function of the
membrane stresses, w is the radial'deflection, t the shell
thickness, R the radius of the middle surface, and p is internal
pressure (taken to be positive).

An approximate form of the deflection pattern is assumed:

W:AI_{. Crv.Y /és)[éac“ﬁnx Cpe. D5 -+ é3m:?%f.+

g R R
b, o275 (I-3)
) a225]

0 for a shell subject to axial compression

where k = 1 for a shell subject to eccentric compression
or pure bending
¥ = even integer

and m and n represent the number of waves in the axial and
circumferential directions respectively, the number of waves
in the axial direction being within a length equal to the
circumference of the cylinder. Throughout the present study
¥ = 2. For more localized buckling, a larger value of ¥ could
be used. When k = 0, (I-3) is the same as that used in [I—z] .
In (I-3) , b,is not an independent parameter but is used to

satisfy the condition of periodicity of circumferential

displacement[l-B] . Corresponding to (I-3) , an expression
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for the stress function F is proposed

o A 4 s 1 PR A MY e S
F=—s + 07 R R 2 :

o s
F R, G AX e an5 g GadmX g a e AT (I-4)

‘.E 20 k

The stresses 4, and g, are due to axial compression and bending,
respectively, and are positive for compression. For shells subject
to axisymmetric compression only, 0p =0 andtfc is replaced

by ¢ to avoid any possible confusion in notation.

Method of Solution

When w and F in (I-3) and (I-4 are substituted in (I-1)
and (I-2) , the equalities generally will not hold. They can,

however, be expressed instead as

& PR r D 92
Vi-El(55E) -5 SE - sEl=4 (i3]



and

l,l.

DV 2'F

An approximate solution
on the right-hand sides

by the Galerkin method.

of

3F 2w, s F D%
2s* ax? IxDS 2xd5 0 JxF ast

obtained by minimizing Q1 and Q2

the above equations; this is done

The Galerkin method establishes the following set of

equations:

L 2mR
f[&lmmﬂwv\_ﬁ_dsdx:'O
Py R R

L amR

Ql Co/ﬂm Coa. AMS JSJX:O
) R E

L ampR >

./- &lcria””( dsdx =0
6 0

L amR

CQ, o 25 dsdx =0

/

]

(I-6)

(I-7)



L oarR
]lec'/‘ Coa ™S Cown a(ﬁi_)Jst =0
0" 5 R R - 4
L 27"/? (1‘8)

Q cﬂz"lv\X_‘_cr&QﬁS
l( R R

Again, k = 0 when the shell is subject to axial compression
only. In the following sections, solutions are obtained for
axial compression and bending separately, although the approaches

are the same.

Axisymmetric Compression

In this section, the parameter k in (I~3) and (I-8) and
also crb in @-4) are zero. Also, 0 o in (I-4) is replaced by 0 .
The coefficients 350’ 32+ 211+ and a,, appearing in (I-4)

can be expressed in terms of b2 and b3 through the four integrals

of ~-7) . The relations are found to be

=4 Q 2
a::: [_ a>_+}7(.7°(] , _23%::___'____ 6:)
¢ Et 3apm Nt
/"”7‘1 :
Q”a - (/.. 4-,«"7) ba , .._a_'}f. = - < (1I-9)
£t (/+m)? Et (1+~)
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In the above expressions, the dimensionless parameters are

defined so that

: 2
M= | (I1-10)
m
! R
- A I-11
X = (1-11)
by
— (1-12)
77 fx

The ratio n/m evidently represents the wave-length ratio in
axial/circumferential directions.
The integration of (I-8) together with the relations given

in (I-9) leads to the following two equations:

«p = Ls). +{ I e

12(1-%%) (+2)* F U+

o 2
/6 23 of [+M [ 4s (I-13)
+(/+/*)'/M?} M \*)
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! a | A2 2/52
s 3+(7 »”) [‘* (/ﬂ)%]d +§ (r+1)°
-3
-7 (/’ﬁ«)‘ " 3{2 }—% }(’ét—') N

The function ? on the left~hand sides of the above equations

is a nondimensional stress parameter defined by the relation

ok PR
= (I-15)
b= TN S g

For brevity, (I-13) and (I-14) may be rewritten as:

«¢= A+ (At hyrdea’)od + As(l)” (1-13a)

< ¢ = B/+(19:.+34’f)°<2—t—(5s-+—%5)[%) (I-14a)

where
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_ (1 +u ) ~_ 1 }
12 (1~332) (/+A4)
A _ ek
__[.8 ! _ /e
5 [(H-M)“ T e A= (A
As = /14 B = _Lrt_ ) 16
/6 LY JRNEY (1-16)
B :=__l_ , B, — '%Mf
4 NP
B, — _3s B :-—[__,__..—*._L.:{/u,
T et re A(14)* 32

The parameter (bz/t) is eliminated between (I-133 and (I-14a)

and the stress parameter ¢ is expressed as

¢:.9°<A'_.+ Ci A, (1-17)

In the above equation,



12

'455/ Bs~

C = (1-18)
l As"‘ Bs‘ “—%G‘
A As As _Ai
Cl_____(Ai b2~ 5)‘—- A;ﬁ ‘))Z"'( b - 8“)@
B
Af ~ Be - == (I-19)

’7

As can be seen from (I-15) to (I-19) the dimensionless
variable O R/Et is a function of «, % , and 4. The buckling
stress is thus obtained through minimization with respect to
the parameters o, ’7L , and M- . Differentiation of

¢ with respect to X is carried out first to obtain

¢ __ 9T _ | (1-20)
D X 9 X
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for p = constant. Thus from (I-17) :

-4 =‘/_£'_A_'__. (I~21)
C, A

and finally from (I-17) with & given by (1-21)

o = 2 VA;AA \/C, C.l (1-22)

The notation #Jot thus denotes the value of 4> minimized
with respect to « . The expressions for C1 and C2 are found

from (I-18) , (1-19) , and (I-16) . From (I-16)

¢, = YCC, \/-———-—3(:_»1) (I-22a)

It should be noted that ‘/1/3 (L - 9 2) is the classical coefficient

from small-deflection theory for an unpressurized shell. When

J = 0.3, \[1/3(1 - Y2 ) =0.606. The minimization of ¢
with respect to 7L and A4 is most easily obtained by
numerical, or, rather, by graphic means. This is done by
plotting CPO( in @-22a) against 7 forveach given value

of M . The minimum 990‘ found from each of these curves
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is called o7 which should be equivalent to the value
found from the relation 94)0(/9’7( = 0. Table I-1l gives

some of the numerical relations obtained in the course of this

procedure.
TABLE I-1
AL =0 0.2 0.25 0.5 1.0 1.15
”n = 0.59 | 0.53 | 0.325} 0.18 | 0.11

¢°(;,)=o.605 0.44 | 0.406| 0.29 | 0.19 | 0.161

Let us introduce the following dimensionless parameters

ok (1-23)

lll

and

(I-24)

w'
m |~
o+ |
»
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Then (I-15) may be rewritten as

——

O, = ¢°<nz + AP (1-25)

where q;,ﬁ represents the minimized value of & with

respect to &« and ~ . To find the dimensionless critical

stress ¢g=_,. at a given value of dimensionless pressure p,

several different values of )* are tried in (I-25) together

with corresponding values of ¢dpbfr0m Table I-1 wuntil the

right-hand side of (I-25) is minimized. The value of A, at

which a;p?

values of

is minimum and equals O’cr' is called Alor- Some

7 for various values of P are given in
O er 304w, P g

Table I-2.
TABLE I-2
P = 0 0.01 0.05 0.1 0.2 0.4 0.6 0.8
Moy = 1.15 1.10 1.08 1.04 0.76 0.45 {G.24 { 0.08
5=cr = 0.161| 0.176 10.227 | 0.283 | 0.37 0.481(0.56 | 0.6
It can be

indicates

direction

seen that U decreases with increasing p. This
cr
that the buckling wave becomes longer in the circumferential

when the pressure increases.

The relation between 6"cr and p is shown in Fig. I-1 as
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Curve II. The results from [I—4]and [I-Sland the test data
from [1—8] and [1-9] are plotted in this figure also. The
broken curve shown there represents the curve best fitting
the data in [I—S] ' [1-8] , and [1—9] . The predictions of
the present theory are shown as Curve II in Fig. II-2 so
as to afford a comparison with experimental data given in
(1-7] .

In Fig. I-1, the broken curve indicates that G .,
is only about 0.09 at p = 0, and 'E;r increases from 0.09 to
approximately 0.35, then levels off at higher values of
p. However, ‘?Er is expected to reach the classical value of
0.606 when the value of p is relatively high. One of £he most
probable causes of the lower result indicated by the broken
curve corresponding to test data lies in initial imperfections
which in general increase with increasing R/t. If the imperfection
factor does not vary significantly due to the change of p, then
the ratio of EZr at two different pressures will be nearly

independent of the effect of imperfections. Let o represent
cr,o

0 er at P = 0, and
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The ratio, - = is plotted against p in Fig. I-3.
A(rcr/ Fer,o' P g P g

As shown in this figure, the predictions of the present theory
are in reasonably good agreement with experimental evidence,
which is re-plotted from the broken curve of Fig. I-1l.

of introduci rati T —
One advantage of introducing the ratio A GEr/ d_cr,o
is that the relation in Fig. I-3 can be used having test data
at only one pressure to predict the critical stress in the
same imperfect shell at any other pressure. For instance,

a test is made at p = 0.4, for which value Fop s found

experimentally to be 0.29. From Fig. I-3, the present analysis

gives A 5.,/ Cor o = 2-02. Therefore, it can be predicted

that &:cr = 0.096, 0.221, and 0.356 at p = 0, 0.2, and 0.8,

respectively, while the mean test data from Fig. I-1 show that

o—

0oy = 0.09, 0.25, and 0.34 at p =0, 0.2, and 0.8, respectively.

Eccentric Compression, Pure Bending

When a cylindrical shell is subject either to pure
bending or eccentrically applied compression, k in (I-3) and
( I-8) is unity. The solution in this case is analogous to
the solution of the previous section. The coefficients of the

Airy stress function F are found to be
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20 ! a 2 3 ) (6; 1]
—3l = X - = M —_—) =
EE? e [ " </c T [L? t)

Aoy _ 3 by \2
£ - ZECﬁ( f)
| > (I-26)
Zu_ _ “[/—-(3/“.’-’!'*\3)7](%)
Efa -?(‘/-}-,«_)'1
Qas (C'“*a‘m*)r’?z"‘z*’/i[;?( 2
Etf /¢ ( 1+ m)*

where A¢, o, and < are given by (I-10) , (I-11) , and (I-12) ,
respectively.

From (I-8) and (I-26) .

N I
wd, = (/_Ivzj [ (/:’//-) 4 ,'“,,*(H. 3 +;m;) ] + {

! |

.
| [c,q_+“‘ 3t J }‘57@»&103%—;——%—;}/”1 =
) 5 |7 Gt (144
a [y { ] 2
I+ 7+ —x tF L, ba (I-27)
[P e (4
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b=y [+ (o 445

A A4 )
+[,,_+ it St oE s Jod
# , Gq‘(lf/@‘
> § (
) S76p 4108 55 55 Yl 3,&4-;4 | é)"
sin (1) 3a(/4m)? /28 |7, (t

(1-28)

The stress parameters ¢1 and ¢2 are defined by the relations

— 61R jL.dER __l_ 3/&.+.L-‘ ,Ejiﬂ
7 Et 2 Ft < ) gt

_.QR 3 a K ! [ PRJ

T e 2. — — [ 3 — -
d>2 Tt +-3 o1 z<”°+.;z“)gf1 (I~29)

The experiments of Suer, Harris, Skene, and Benjamin [I—?J

indicate that shells subject to compression or bending will
buckle into a multiple wave pattern in the longitudinal direction.

Numerical results from the present analysis also indicate that
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m has a magnitude greater than 10 when R/t is greater than 500.
These calculations are too lengthy to present, but for example:
At p = 0.48 and R/t = 1,000, it was found that l/m2 = 0.00204,
which is much less than unity. The value of « is usually in
the neighborhood of unity; hence, from (I-1l1l) m? varies
approximately as R/t. In the present analysis we are concerned
only with extremely thin shells; hence this ratio is large.
Therefore, for practical purposes l/m2 and l/m4 are negligible

compared to unity. Thus,

o R _
h= = h=2he s 2Rl =30
= — v Ve 3
s (- & (1+)° [ U+ ¢ ]ql/
a 2
ga 2| 2 9(1+m) 2
(/ﬁc);)] * 256 ( t )

and
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a 2
= _[t# / g e 27 <
<%, = + [+ = J«
a(l~yY) * 401 +m) K

4

2
T | ] Ji
+ — — 3/“ A —
{ P(w)” [J’(H»)" NPT ] m }(t) e

For brevity, (-3 and {-32) may be rewritten as:

-4 ¢5 :A,-}—( A-3+Z3'7 +/14,c’71)°<4+ /T;(i‘) (I-31a)
and
b= B (BB B B e
where
Ao (/7'—,4»32 1 !
FT () 2 (14a)?
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::._ZLﬂZ£l~ gizz [ + A
] 1s¢ YR
B, =— B 7.4
5= y B=
4 ( 14+ M)
>SN = .3 5
Bg—— -?C/+A.)J’ ’ Bc_—[é‘(lf—,u)‘_}- [a8 ]’“’ (1-33)
Further,
_ Acp_p B¢
C=& ™ = 2
I - 3B __Be
3 & ql
Ae B B ABB 8 /ng ,Zj‘,~) .z A R
== "2 — - - - == +-‘——B (—£B—--—i8 4
52‘:2; . - 7 <3$ méf7+zx4 25")?
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The simultaneous solution of (I-3la) and (I-32a) leads to

756 = GA + G, A, x (1-35)

’

x = —-——-——_I A_i’ | (1‘36)
/e A

and finally from (I-35) with & given by (I-36)

From the relation 9¢b/ 9 = 0 and (I-35)

p—— g — / I -
(¢‘)d = A& \/ /A) \/C, G z\/E' C, 1(/__))-1) (I-37)

where ( Ct)b)o( is the value of d)b minimized with respect to ©x.

For classical small-deflection theory,”] = 0; hence, C; = C, = 1

and the expression Jl/Z(l - 92) is the coefficient for this theory.
2)

When 9 = 0.3, \/1/2(1 - 9 = 0.74.
Analogous to the solution in the case of axisymmetric
compression, the minimization of q)b with respect to a4 and 7

is done graphicélly. First, (dsb)d versus "7 is plotted for

various values of M. The minimum ( ¢b)a( found from each
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of these curves is called (¢b),,( 7
b

of the numerical relations obtained

procedure.

. Table I~3 gives some

in the course of this

TABLE I-3

s =0 0.25 0.5 1.0 1.15
i = 0.66 0.46 | 0.23 0.15
Py = 0.74] 0.52 0.34 | o0.21 0.195

Let us introduce the following dimensionless parameters

R

5 = L
t
and
— Oc
= R
Et
Thus, from (I-30)

(0_7 + -33—03)0{'7

- (¢6 )o<.

+ 2P
7 2

(1-38)

(I-39)
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To find the dimensionless critical stress ("—_b + 3 5
2 c‘/cr
at a given value of dimensionless pressure p, several different

values of M are tried in (I-39) , together with corresponding

values of (Sbb) from Table I-3 until the right-hand side

%,
of (I-39) is minimized.
The value of _« at which ((F' + _3_ o is minimum and
b 2 C /7
equals éFb + ;_d:c) cy 1s called A, . Table I-4 indicates

some numerical relations in terms of the pressure.

TABLE I-4
P = 0 0.025 0.05 0.1 0.2 0.4 0.6 0.8
/A(cr = 1.14 1.1 1.04 0.86 0.631 0.34 {0.14 [(0.02
E-E;) = 0.2 0.249 0.294 0.365 0.48} 0.64 |0.73 |0.734
2 ¢ ¢c¢r
( c)* cr = 0.133] 0.166 0.196 0.243 0.321 0.426[0.487{0.489

It can be seen that Mor decreases with increasing p. In the

above table, (Eiﬁ* stands for the value of (o ) when
cr ¢’ cr

5fb—’0. The relations between (;% + E_é:c) cr and p as well
as | ‘;2)*cr and p are shown in Fig. I-2, in which the data
from [I—? 3 are shown also.
The broken curve shown there bounds test data obtained
by Suer, Harris, Skene, and Benjamin [I-?] for axial compression.
Bending test data due to these same authors are shown by individual

points in Fig. 1I-2.



26

Let us introduce the notation

A(O:A +—§-6:z) :'(—‘ ’*"3'50;“)"“("3"'%(2)",0 (1-40)

cr

where [~ = = -
Grb + %‘dhl)cr,o represents the value of (}B + %-Gb) or

_ 3 —
[lé&b * E-GE')cr

(61)+'§J?c> cr, o
2

at p = 0. The ratio is plotted against P

in Fig. I-4. Again, this ratio should predict the critical
stress in an imperfect shell from test data at only bne pressure.
It has been observed tha£ generally ( EZ)*cr is not equal
to the value of &Zr found for axisymmetric compression. The
difference is due to the deflection patterns employed. Curves II
and III of Fig. I-2 indicate the effect on axial compression
of those different patterns and show that even a slight
eccentricity in application of load will greatly reduce the
buckling stress. ( 6=C)*cr versus p is shown in Fig. I-1

as Curve 1IV.

Discussion and Conclusions

It can be observed that,/u= 0 in the case of ring buckling
and, further, b3 = ’7 = 0 in the case of small deflections. If
either & or b3 is zero, the above analysis reduces to a small-

deflection solution.
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The ratio between stresses, (& + 3 = -,
( b "5 0c/ er Ocr
is approximately 1.25 and varies only slightly with pressure.

Fo)*
Therefore, the ratio ( ) €T is 0.833. The procedure

—

Scr
indicated can be employed when test data at one pressure

are available to predict the critical stress in the same
imperfect shell at any other pressure. Since more consistent
test results can be expected from shells under higher
pressures, Figs. I-3 and I-4 are available to predict the
buckling stresses when at least one test has been made on
some moderately pressurized cylinders. For instance, if
the critical pure bending stress,(&b R/EE) or has been
found experimentally as 0.53 at p = 0.4, then from Fig. I-4
can be found (o"’bR/Et) cp = 0.163, and 0.603 at p = 0,

and 0.8, respectively. This evaluation is applied only to
shells having the same ratio R/t. The effects due to a
change of R/t will be discussed in a later paper.

The predictions of the present theory for pressurized
axially compressed cylindrical shells are in substantial
agreement with test data far a rather wide range of values
cf internal pressure. Predictions of the theory for pressurized
cylindrical shells in pure bending are in reasonable agree-
ment with experimental evidence for dimensionless internal
pressures in excess of 0.l but are conservative for smnaller

values of internal pressure.
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PART 1II

POSTBUCKLING BEHAVIOR OF PRESSURIZED CYLINDRICAL SHELLS
WITH INITIAL DEFLECTION

Introduction

The influence of initial imperfections on buckling
strengths was first studied by Donnell in 1934 [II-l} .
The solution for cylindrical shells subject to axial
compressidn was later carried out by Donnell and Wan [II-Z] .
For shells under external pressure, the effects of imperfections
and finite deflections have been studied by Nash [II-3] '
while the case of fixed edges was discussedbby Donnell
in 1958 [ 11-4] .

The studies made iﬁ,references [II—l] through [II-4] are
based on the assumption that the additional deflection has
the same form as the initial deerction, but a different
amplitude. In a paper published in 1958, Ivanov [II-Q]
considered the case of a shell under the action of hydrostatic
pressure. His paper is distinctive because the additional
deflection assumed wave]engths different from that of the
initial deviation.

In the present study, the effects of geometric imperfections
on the postbuckling behavior of preséurized cylinders subject
to compression are in&estigated. The total normal deflection

is assumed to be different from the initial deviation.
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General relations for finding the minimum compression in
the postbuckling region are expressed. A linear solution
is then deduced from the nonlinear treatment. The smallest
value of the minimum stress is found when the additional
~deflection follows the same form as theinitial deflection.
This case is treated in the section beginning on page 38.
The imperfection factor is introduced in the finite-deflection
compatibility and equilibrium equations. A new relation
to express the imperfection parameter as an explicit
exponential function of both the radius-thickness ratio and
the internal pressure is proposed. A method for finding the
exponential function is described, and the solution for the
critical compression is found in a fairly simple form. The
decrease of minimum load with the increasing radius-thickness

ratio at different pressure is related.

Nomenclature

Cc Index in the exponential function, defined
' in equation (II-18)

D Flexural rigidity Et3/12(1-y2)

E Young's modulus

F : Airy stress function

R - Radius of middle surface of shell

m, n Number of waves in axial and circumferential

directions, respectively



r
o
K
/(L
¥
)
V4
¢
o
Superscript:
o

Subscript

min

35 .
Internal pressure
Wall thickness of shell

Total normal deflection

First and second portion of additional
deflection, respectively.

Initial deflection

Co-ordinates of a point in the middle surface
of the shell

Wi/ (W + W;), imperfection ratio
R/m%t

(b, /t) /o

n2/m2

Imperfection coefficient, defined in equation
(1I-25)

Poisson's ratio,)= 0.3

4 4 4
L + 2 9 ¥ 0
o xZ 9x<3s2 9s4

Stress parameter, defined in equation (II-21)

Uniform axial compressive stress

Perfect shell

Minimum wvalue
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Additional Deflection Different From Initial Deflection

For an imperfect shell, the additional deflection due
to load can be considered as being composed of two parts.
The first portion assumes the shape of the initial deflection,
while the second has a new wave pattern which is different
from the initial deviation. The total deformation is, there-
fore, the sum of the initial deviation and the two parts
of the additional deflection. In the follawing, the non-
linear compatibility equation and equilibrium equation
are first written and the solution is then obtained by
using the Galerkin method to integrate these two equations.

Basic Equation. We let w equal the total radial

deflection; w., the initial imperfection in the radial

direction; and F, the Airy stress function. The finite-

deflection compatibility equation has the following form:

2
Fw W | Stw EILARY
VF E[(a 33/ T A 5 TR ;x*"(axss)

(II-1)

AW twe R ]
Ix* s’ R 3
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The total deflection w can be written as
W= W + W + W, h (11-2)

where w, equals the first portion of the additional

deflection which follows the form of the initial deviation

and W2 equals the second portion of the additional deflection

which has a wave form different from wi or wl, Further, let

oW

= imperfection ratio (rr-3)
WL"f'wl

The compatibility equation can then be rewritten as:

v'F = E{ (2 )a- YW ¥ L W
Axas 3 s’ R <

I (’)JWJ )"__ > we ';“M'] Lo~ 2w

*'-FT'[ AxdS ax’ st ) T e T 33

‘[,2 *wy W — ';J‘W.\ 2w _Da\A/.\ 22w
+[‘l VXIS JIxdS 2s’ Ax" 3)‘-‘ ? s*

} (11-4)
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The equilibrium condition in the normal direction
derived by the variation of the total potential energy has

the following form:

DV*(W—W.-)__J-'_ IF .,.t(?“/" Btw_ M atw

R 3 st I T 92 st
. 2w )
Dxa? 9x9S )— F (I1-5)

Deflection Function and Solution. The deflection

functions are assumed to be

We = F“‘vaéx Cot nRS +}’3°"'L;L§"+ by cnak}s_] (II-6)

and

Wy = l; mi’s_m;_s_ b. crv."j" b 2KkS II-7
x 2 R A + b3 3 + 05 e o ( )

In general, m # j, and n # k. Froam equations (II-3) ,
(rr-6) , and (II-7) , the total deflection has the following

form

W= bi[ e X teams - '
s [ 2 s+ (/ F))\,\c.,;sl;_m%}

by [a2MX 4 e AS. 4
thleipt s R
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(/—F)AB(M%(ZL+MRk‘)} (II-8)

R

where the magnitudes of [7 , .. and X3 are considered

to be designated so that only two equations, .ocorresponding

to free parameters b, and b,, need be used to find' the

critical stress, The ,Xz and-,\3 are defined as

ba
AJ':- : —
/- by
>\3= I 53__‘
1= by

The stress function assumes the following form:

2 f'/? 4 3 .
—_ s AN, Ay CoaMX_ Cpami L amx ans
= A -+ 7 X 4+ Qy r: £ + X;a Lon [

L Ay, LAWY g, L e ix cn%:?__.,.c“cnazx
R |

2KS L Cor 6a X g AKS L d) sim MX_ s TX_siaS slkS
+Coa_c0'¢R 4+ Caa P r -+ R K R 19
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+dy e 2TX tadnS 4 gy te2mX e 2KS
F e R R R

dy Qe MX €y IX_ tean X oo kS (1I-9)
+ G4 3 P y: I 4

Applying the Galerkin method to both equations (II-4) and

(II-5) establishes the foliowing two equations:

}\: LA a4 _ '
4 - k —_ -
TF{[H (/ P):m—f7 Ja—-f//—"r(/—/‘))\,;;]fj— f, (II-10)
ol 5t e K15 = (IT-11
/—-—/:‘-{[/1'-(/-/")}\3—3‘-;]0'_'—[/"1'(/ /")>‘3—_;';]P}"7[a 4 ( )
where
— 5 3
o =O‘K/[t ’ P= fﬁ%ta (11-12)
In equations (II-10) and (II-11) , the fl and f2 are functions
AOf [_' , m, n, j, k, b2’ b3, R, t, )) . >\2, and )\3.

The complete expressions for fl and f2 are very long, and
will be reduced to specific forms in later discussions.
Depending upon the magnitude of ,\2 and )\3, there are

two limiting cases:

(1) 'kz, A ;£> 1, i.e., most parts of the additional
deflection are different from the initial deviation.

(2) 5, A (< 1, i.e., most parts of the additional
de%lect%on follow the same form as the initial deflection.
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In order to find which one of the above two cases yields a
lower value of the minimum load, an initial study is
carried out on the basis of a linear solution. The non-
linear solution should change the magnitudes but not reverse
the conclusions drawn from the linear analysis.

Linear Solution. For the linear solution, X3 = 0.

Eguation (II-10) is reduced to the following expression:

i

- 1
x f(/'l""“““/—-l ’\.77 )0" (/““'L /‘F’\ ,l/ ’D_}

<

I r 2 ERPIN }\1.\ o) l jlr/\-? {(11-13)
k = L o + 533
z(/-y)z(/*/“) + (k7 oF } + [(/#‘); + (k+j>’l.}

I

The symbols = and M are defined as:

o= 'n%,,“ (II-14)
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After minimization with respect too(,

2
- — /“"*'(/*P)}uk;/ma— — |~

|
[+ (1= )X, A V3 (57 /+(/~F)A}JX1[/+

Va

\k\,:q(.!) )] [/ (/+/;)) j"')\: } (II-15)

Upon examination of the above equation, the two limiting
cases are seen to be: —

1) when A ¥ ) (II-16
(1) il o ( /// P ngjjgg )
(2) when N.4<| , F = A= (II~-17)
V3{/-7 )
It can be observed that Case (2) always predicates a lower
value of ¢° . If only the minimum load is of interest, the

additional deflection can be thus assumed to retain the

same wave-length in both the circumferential and axial directions.

Hence, 4x2 and A3 are considered to be zero in the finite-

deflection analysis made in the following section.

Acdditional Deflection Following the Wave Form of Initial Deviation

The imperfection ratio, [ﬂ , is proposed as:
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[ = ] — exp(—cRf) (I1~-18)

The index C is always positive, and is assumed to be a
function of internal pressure only. The determination of C

will be discussed later. In this part, w_ =0 (i.e., A, =

2 2
A; = 0). Equations II-10) and (II-11) have the following
form:
(+ 1) )
| + M I l a2+ _
?b::/a 2 +°<{ = = 2 -_-)/“7
- (~y) (4#4) (/) 2]
2 2 2 2
i /G(/+/';) p f + (1442 ) (1+17) (__éa_) (11-19)
(14 ) 16 < c
and
/ PR l g (1+l) 2 2
—_— T e = | = M X
/— I 7 3(1-9%) [4‘ (/w«)“ J

| (2@+r) 3 e I 1+ } b ’2(11_20)
T X { (1+4)* o & [.z(/-hw)’—i_ 32 } {t>
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In the above equations

. 2
y — & — P R PR
p =0 —pp =T _
Et /M'E-[-‘-‘
”?2—%[33—-:1‘ (II~21)

After b,/t is eliminated from equations (II-19) and
(Iz-20) , and 4) is minimized with respect to «, the following

expression is obtained:

p = (/‘*/7) \/C,CJ/,/a’(/_g-‘) (I1-22)

and C_ are defined as follows:

The symbols Cy
~ o /45‘8/-/4/55—/4/'86/)'] . )
A,(Ag“ﬁ)y—-fé‘/o?) |
ca — /458.1 —Asgc— /42 295*—/4336/71 - (/4355- -/-Al,‘ﬁg) N + (Ayﬁ%*ﬁ/fﬁ_(;)%a
/42(/45"‘\85— ﬂg/,)z) ) )

(II-23)
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where
K
/4 — (/7‘-/‘*)
/12 (/~7)1)
|
/42 = a
(1++)

Aazz—[‘i'(:l-rp) +"'“‘J/’L‘

(f+m)* &

Alf = /6 (/+F)/W7(/+/L)2 |

e = L (7))
8/ = (/+,uf)/3(/—*9“)
B;_-‘-"- ——6—1_

Bu= w1/ /2 1)

Bs

I

a( M /”)/«tfy(/-/uc);l

BG :——/"C—[ 1 + [/

3 (1+m)* 7

]

/

(II~-24)
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The next step is to find the minimum 75 versus /‘-/l
when /L and /7 are given. This minimized value is denoted

as , which is, therefore, a function of 4 and 7o,

¢°\/: N
The superscript o is hereafter used to indicate the parameters
of perfect shells, for which ["=o0 identically. The

-4
magnitudes of ¢K,7zver3us /M were found in reference [II—Q]
?

Denote

Y = %o (x1-25)
#)o(,/zt '

The ratio Y is here called an "imperfection coefficient.™
The variation of ¢ with I7 for different values of 4 is
shown in Fig. II-l. Note that Curve IV ( A= 1.15) is for
unpressurized shells, while Curve I (/= 0) is for shells

subject to rather high pressures, for example, pRZ/Et2 2 1.

At the same pressure and R/t ratio, /7 remains constant and
Y decreases with decreasing AL . From equations(II-21)
and (II~25) , the minimum compression in the postbuckling

region is expressed as

(;_:_) .:_b’ sbo; + M, ;51 (II-26)
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The notation A, represents the value of A at which the
magnitude of 0~ is minimum.
The problem, now, is to determine the index C in equation

(II-18) . At greater values of the internal pressure p, the
wave length ratio A4 becomes smaller [II—é] while the imperfection
ratio [’ is also expected to be smaller. 1In Fig. II-1 it
can be seen that 0 is a decreasing function of I but an
increasing function of M. Therefore, the change of pressure
should not significantly change the magnitude of Y  due
to the somewhat counter effect of fﬁ and AL . For the purpose
of evaluating C, it can be assumed that at certain values of

R/t:

I
|

-]

Qlley

—

In the above equation, ¥ is taken as an average value of ¥
for all pressures. The'U' is the actual minimum axial compression
found at that R/t ratio. The a“p is the corresponding minimum
stress in the perfect shell under the same pressure [II—Q] .

After 5; is chosen, the relation between /' and M is
found from Fig. II-1 . From equation (II-18) , C can be

found in terms of Arwand, hence, in terms of AL . Also,
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A% can be found in terms of p from equation (II-26).
The index C is thus determined as a function of p.

Numerical Evaluation. In this example, ¥ is assumed

to be 0.6 in one case and 0.52 in another with R/t = 1,500.

When ¥ is used in Fig. II-1, the variation of [ with
A* is found. The use of equation (II-18) determines C in
terms of [ﬂ , and, hence, in terms of AL . When ¥ is used
in eguation (II-26), the relation between P and A* is

. ¥ ¢ =\ .
obtained when ( ¢Q),L + A% p) is smallest. Note that

o

é‘x’wl varies with A [II—6J. The variation of C versus

P is plotted in Fig. II-2., With this figure and equation
(11-18), /[ is determined by p and R/t. It should be noted
that the ¥ in equation (II-26) is, in general, a function
of I ana M (Fig. II-1). When the p and R/t are known,

[7 is known; thus ¢;”l and depend on AL only. The
0 R
/.

\ ) is found by assuming different values of A+ until

Bt min

the right-hand side of equation (II-26) exhibits its lowest

(LR
—Iﬁf)mln

is shown in Fig. II-3. The test results from [II—6, Iz-7, II—SJ,

2
value. The change of with pR2/Et when R/t = 1,500
in which the R/t ratio ranges from greater than 1,000 to less
than 1,800, are also adopted in this figure. These test data
are much lower than the classical buckling load and are
hence considered as the minimum load. The variations of

ﬁ:ELg ,with respect to p = 0 and 1, are shown
Et min
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in Fig. II-4. The two curves in this figure serve as upper

and lower bounds of minimum loads for imperfect cylinders.

Conclusions

The minimum load was found to be lower when the final

buckling pattern had the same wave form as the initial no-load

deflection. BAn imperfection ratio was introduced as an

explicit function of R/t and pressure index C. Numerical

examples are compared with a group of known experimental

results. A similar approach can be used for other types of

imperfect shells.
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Fig.

II-1.

Variation of Imperfection
Coefficient with Imperfection Ratio
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PART IIX
STABILITY OF STIFFENED PRESSURIZED CYLINDRICAL SHELLS

SUBJECT TO COMPRESSION OR BENDING

Introduction

The stability of’a stiffened cylindrical shell was recently
studied by Becker and Gerard [III-JJ by the use of small-
deflection, orthotropic-shell theory. In 1958, McCoy [III—Z]
reported experimental results on the general instability of
ring-stiffened, unpressurized, thin gylinders subjected to
axial compression. In 1960, Peterson and Dow [III-B] reported
test data for a pressurized ring-stiffened cylinder subject
to axial compression. |

In this part of the present report the general instability
of thin pressurized cylinders stiffened by discrete rings is
discussed. The cylinders are subject to axial compression or
bending. The restoring forces from the stiffeners are introduced
in the equilibrium equation by the use of the Dirac delta
function. The Galerkin method is used to obtain an approximate

solution.

Nomenclature

D Flexural rigidity

E Young's modulus




L, R, t

p.qq\FQ\MQng'z
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v

Airy stress function

Length, radius and thickness
of shell, respectively

Number of rings

Co~-ordinates

Internal pressure

Moment of inertia of stiffeners

Twist moment of inertia}of stiffeneré
Dirac delta

Uniform axial compressive stress
n2/m2

Laplace operator

( ‘72) 2

i_th ring' i = l, 2, e o 0 N

Basic Equations

When a shell is reinforced circumferentially by rings,

the equilibrium equation can be expressed as

D V‘/.W. +

N
¥ w
- [E(:Ié‘;'*s"t/;.“" G‘:J‘:-;;a_‘;_? ]’S(X~X;)

2 1 g2 Y A'w
IF YF 2V _ 4
Jx* + 't[ 2 25’ x5 x9S 7
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2 a
DD L i Jw }— P (111-1)
S oX

In the above equation, EiIi and G;J,; are the bending and torsional
rigidities of the i-th ring, respectively. The Dirac delta

function is defined as follows:

L :

7f(x) % (x - o) dx = f(x‘-) (III-2)

where

d space between adjacent rings = L/(N + 1)

x; = id = distance from the origin to the i-th ring (III-3)

The shell is considered isotropic and the compatibility

equation is expressed as:

4 _ 51 W a DJM (DJW)__,_____l‘_/] -
v F_E[(Dx3S)"<;x‘) rE R X (1ii=4)
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Axisymmetric Compression

For the stiffened cylinder subject to axial compression,

the general buckling pattern can be assumed to be

W =&, +4, M";" Con ’"RS + bacna;" +£,_c,‘é_;‘-5— (III-5)

As an approximation, the RAiry stress function F has the following

assumed forms:

F=_£_ ga.,. Ay crv.l“_"; c,n..lki__;.a.n c,.,.ﬂ_;_i.
2 .

+a_”c44_2;«>< + a’nc""':‘;‘x c"‘aks (II1-6)

After the expressions (III-5) and (III-6) are substituted into
equation (III-4) and the Galerkin method is applied, the coefficients

of F are found to be:
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Ay b : T
E¢? (/+m) [ ( )f)]

2 #
£t (1)
~-'i
aol él
£+ 3am
Z _a
Lio __ X %3 AL b
—_— - o
¢’ ea 7a
where
b o= _bi
I %+
‘712
M= n?
o = R
mZ

(III~7)

(III-8)

The integration of (III-1l),together with the relations given

in (III-8), establishes the following three equations:
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T !
+ 31 7 ) (I11-9)

’ ! 3
+ (% +%4 7 > (1II-10)

” v
"o ' (111;11)
+ % (DJ 1)
where
F=25 , pFotR
Et £t
’)7 = _—i:z‘ oy, %= E"‘ (ITII-12)
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The dimensionless parameters B', C' and D' are used for brevity

and defined as:

|
‘ =
f% N
(6
By = [(WA)#_,WZ»Z c"“aq“x‘.)
l%(/ ) K

+ /&Z:ZIV‘? J; Q”:(W’;ex) ]

' /
85: -———i—
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C, =4 [_L :
? 4 [ ra (17 4)° 1
r |

C —

R —
3 (/=Y
/ I

=

C;= 2874

</~/-,u»):l

D = (+ &) &
TS

24 ( /+n)
{
Dg = - =
‘/‘%(/-f,«,)‘2
N
o /-f-%, L)
3( /=9?)
/ P
D =
’ (1+m)" /

(III-13)
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In equatidns (Xr1I-13) ,

= Ec e
LE
¢ [ 12 (1=9%) ]

Gl ¢ J-(: (ITI-14)

LA
[ 2 (/- ‘)]

Sl
l

Axial Bending

When a cylinder is subjected to axial bending, the

deflection function is assumed to be

W= o, + tri(ff—)}:éa Crx 22X epa S

+ bam-’ll‘éx + by e 223 ] (III-15)

The corresponding Airy stress function F is assumed to be
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(I11-16)

where O,  is the peak bending stress.
Following the same reasoning discussed in Part I, for
practical purposes 1 and 1 are negligible compared to unity
mZ
in this section. The approach to the present problem is the
same as that used for the case of axisymmetric compression.
After the equilibrium equation (III-1l) is integrated with the

use of equations (III-15) and (III-16) , the following three

equations are established.

-3 f

_ _ =] B

-t~ .y
+o<(39+8¢”7+87n71) (I11-17)
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GZ+—;°_=_—-(Ca-)-,() > +°<*
+ .°<< C;. + E; 'Y(z) . (III-18)

1
-]
+ D7 7')” | (III-19)
where
— o7 — oc R
0: = __‘;_ﬁ- y O = — (III~-20) .
Et t

In equations ( III-17, III-18, III-19), the following symbols

are used:

E; 70/ +4>)
256
e gy Lnor 1 1. i)
N
27, i (mXe
+/“—él J CW-<R )]
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(/+25

B 7+ £)

BG = h/u_[; (/‘/“/"-)2 J
—1 g( 1+ %) e
B, =

’ b (1 a)™
g 9 ( 1+ &) i

T sa(4m)

- 3 A~ 3 AL
S (6 (1+m)* EY;
i?l ]

T A=)

— ]

Co =

(III-21)
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_CJ _ 7{1/«3
7 - 2
g() +M)
5 (+4) L
) =
82 % (144 *
-l ‘
Ds::"-' 2
(6% (+m)
> T
i 2 | :
5, = A2 k)
2 (1-9%)
D = g M
7 g( 1+ m)?
/

Simplified Solution (k = 1)
The solution can be simplified by considering k = 1
(i.e., by = bh)° For the case of uniform compression, when

k = 1 equations (III-10) and (III-1ll) are combined into one

equation,viz:
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/ / / ! -2 i i
o‘“.._./(/(.lD — (Cz +D2 + 37) 3) i( - 4+°<D4-

+O<[C_,:. + (C; -+ D;)Ozl] (I1I-22)

When b2 is eliminated between (III-9) and (III-22), the

following equation is obtained.
Foowp= LW« (111-23)
2 _ ‘

In the above eguation,

84/(C4I+D‘1)*5;<C;+D*)‘g; Cci’l'“oé)//)7 (III-24)

B - (G +0)-(C+ D;M

/ / /
Q= [ B, Co~B8s(Cs+D0y)—Bs(Ce+ Da)

d

I

/ - ’ / /
- 8o (5 07) - B (S5 D)5, (G4 B)
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v 8 (S +B)of- 8 (el 4 03 ][ &,

_.(C:. + D_,/) - < C3, + D;% ].l (III-25)

When the shell buckles into multiple waves and the space

between two adjacent rings is small compared to the length

of the shell, an approximation can be made by assuming

N -
T 2 Iy . 4
L;/I-Cn /:)’"Z a

and

This assumption implies that the mean values of ring rigidities

are used.

9~ 0 and equation (III-23),
oY

From the relation

F—mp = AVY Y (III-26)
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where %/l and L+3 are functions of L and ’71 . 'ihe

minimum value of O can be found for each given value of
M  which is equal to the wave length ratio. It is to be
noted that M= 1 may be used for p = 0 and A decreases
when p increases.
Analogous to the solution for the case of axisymmetric
compression, the simplified solution for finding the minimum

bending stress 5? has the following form:

o’;+~5-o'g"--§_u/°= 1\/%% (III-27)

In the above equation,

l

(T 5)- B (e ) B (&5
B - (C—;/-f 52’) - <53/.,. 53’)/% (III-28)

Go= [5G B+ 0) -8 (& +5))
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(GBI - (T4 )

-

...( 53, + I—); )/“l ] | (III-29)

Conclusions

The effects due to reinforcing rings are included in the
parameters B& and Dé [equation (III-lBﬂ for axisymmetric
compression and in Eé and'S& [equation (III-218 for the
case of bending. These effects increase with increasing .
Since A decreases when the internal pressure p increases, the
rings have a greater stiffening effect on the cylindrical
shell at lower values of internal pressure. The ratio between
the minimum bending stress and the uniform compressive stress

is approximately equal to that found for the unstiffened shell

in Part II.
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PART IV

GENERAL INSTABILITY OF RING-STIFFENED CYLINDRICAL SHELLS

SUBJECT TO EXTERNAL PRESSURE

Introduction

The buckling under external pressure of a circular cylindrical
shell with evenly spaced rings was first investigated by
Kendrick in a series of three papers [IV-lJ . The general
instability of a clamped-end Eylindrical shell with stiffening
rings was later studied by Nash [IV—Z] . An investigation based
upon the use of Donnell's linearized equations derived by
Taylor for orthotropic cylinders was reported by Becker [IV-3].

In the current study a finite-deflection analysis is made
of the buékling of cylindrical shells stiffened with rings and
subjected to external p?essure. .The method of minimum potential
energy is employed. The ends of the cylinders are taken to be
simply supported, and the deflection configuration involves five
free parameters. This leads to a system of five nonlinear

algebraic equations in five unknowns.

Nomenclature
E : Young's modulus
R, t, L ' Radius, thickness, and length of shell,
respectively

N’ Number of rings
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H N + 1

Ai Sectional area of i-th ring

I Moment of inertia of i-th ring

n Number of circumferential waves

u, v, w Displacements in axial, circumferential and

radial directions, respectively

a External pressure
h. t/R
hl t/L
ol i E; Ay (1 -9%)/EtL

B i E; I; (1 -y2)/BtLR?

Potential Energy

The approximate strain-displacement relations of finite-

deflection theory can be expressed as:

Cse 2V | 1w W \
S — —— SLURY (N o —_—

s T 4(35) R
€xce 3Y LU [ Qe W

(Iv-1)
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The extensional strain energy of the shell is

L amR
e s 7)) e +e
+ X9 €x €5 .,«..%:-’i €:s] ch ds | - (Iv-2)

The bending strain energy of the shellis

L amR

_Et 2 W 2 -
b= m ” ( L) a2k
o 0
2 a ? 1
+(%——’§-f—) +9~(/—7') (%—g—s— ]d'x Jds | (Iv-3)

The extensional strain energy of the i~-th ring is

X =X

U =5 Aij (65)1. ds (Iv-4)
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where Xj is the distance from one end, (x = 0), to the i-th ring.

The bending energy of the i-th ring is

2TR
U» E;L'j AW\ W W LJ:‘:{ d -
g 2 + S (IV-5)
A,L 2 ; [( DSi -+ KJ D S2 le o x:
The potential of the radial pressure is
L o.mg
— - 2 r 1
Wk ] ] [e-x
g/ R agR
2 2 ]
.__’V-:_ W W 2w s DW?AXJS . (IV-6)
ag® 2R R xR 95 | f |

The total potential energy is

74

N N
U = U, —+ Ug -f-; Ug. +Z, u,,,,-“\—/-\/ (1v-7)
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Displacement Functions

For simply supported cylinders, the displacement functions

have the following assumed forms:

[,4):2':; d; sew IX. Cn-—’l—f—-!_gas;:-rrx Coa S
( L R L R y

I

L dy coe TX_ o ms (IV-8)

“ R

. .4 X .
n}"=.f»[41,wl’-'—’9-+45$m(1—~)]w'—"——5-
- L L R
where L_ = 1, = average spacing between two rings. The

N+1
nondimensional parameters d;, d,, d3, d, and dg are arbitrary.

Collapse Pressure

For the condition of equilibrium, the variation of the

total potential U [equation (Iv-7)] with respect to each

of the parameters dj, d2, d3, dg, and d5 must be zero. This

leads to the following relations:

PL USRS L L e 1 (2v-9)
2d; 24, ad; ady
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The above equations lead to a series of five nonlinear

algebraic equations which are written in the brief forms:

M- M = s = Mg =Ms = —--JZQS‘ ( /- fi)
Kl Ka k3 K‘f‘ Kf | Et

In equation (IV-10), the M and K represent the following

expressions.

Ml= )\ICIl + }\a C‘,.3 -+ /\3&42 —I~A4d;da-{-'\gd:<‘f

Fhodi + Ards g A dy 4 Agds

K{:C,dl+34 Jg-f-eacl,_‘.e.#dq.-f-&s-ds ’

M.‘l: >\3JI ~ _‘3_ )\q.clls.’_ )\upda -l-/\s' d;' da+3)\cd,J:

+ Nidy o hads A dy p N de

(Iv=10)

(Iv-11)

(Iv-12)

(Iv-13)
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K, = e d,f.i— Cd; 4 e.dsy 4 e, dy

+ €2 AS‘ ’

Ma = >\7C{/ -+ )\/_4~ d; -+ /\,0 J3 + )\/7 dy_

ﬁ'4kli (J;

’

ka'—‘-‘ &QJ/ + <¢ da

’

Ml/. = >\/7 43 -+ )\y Al —-f- >\(? Jl/. -+ Azo ‘15

+ )‘/3 di ’

Ky = epd; + esdy 4 egde + €5

/

d

A

2

(Iv=-14)

(Iv=-15)

(IvV=-16)

(Iv-17')’

(Iv-18)
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M, = /\/scfg + Ag d, + Ao dy + Aardsg

+ )\“f Aa (Iv-19)

7

Ke = ecd, + €4 dyp + e,de + e5da s (Iv-20)

The symbols /\j and e, used in equations (IV-11l) to (IV~-20)

have the relations defined below.

2
>\ = /_{f. I__’/lﬂr %1 77":l e ~ r
I 4y Mz [ A * 1 ]

).

{,—N a\i,, o G Xe
+ QT:‘T({?[C/-M)PZ +, ] m< -
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R
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Iv=-21;

(
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With the given data of the shell and rings and the assumed

value of n, the A | and e in equations (IV-21) and (IV-22)

J J

are calculated. These values are substituted into equations

(IV-11) to (IV-20). Then the collapse pressure  can be

determined by solving the five equations in eguations (IV-10)

simultaneously.
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PART V

EFFECT OF SURFACE SHEAR ON BUCKLING
OF CYLINDRICAL SHELLS

In this part, a thin-walled circular cylindrical shell
is assumed to be under surface shear loading in the longitudinal
direction (Fig. V-1). When the surface shear T varies with

x only, the additional compression at one end of the cylinder

£
F = JTFIQJTQ()J)(

"By the principle of superposition, the shear T can

be considered as a combination of two parts. From Fig. V-2,

T = TI -+ T; ‘ (v=1)

In the present case

T = T, = —-’g— (V-2)
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The role Offri can be considered that of a body force component

in the x direction. Hence, the equilibrium conditions in the

x and y directions are, respectively,

+ =0

X T 2y t

09y L 3% — o (v-3)
dy a X

The potential function V is introduced such that

= _-ig; ’ EL— =0

(v-4)
Y

<

A
PP

When equations (V-4) are substituted in equations (V-3) and
the terms due to large deflection in the radial direction

are included, the compatibility equation has the following

form:

va(o;-;-o’;):'(/#-#) vV +¥(W) (V-5)
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In the above equation

N = 23w Y2 3*w  3'w I d3w _
Fw) = E[(Dxar “('ax“ éy‘)_k 3 x* 1 (v=e)

where - is Poisson's ratio, w the radial deflection, and
x72 the Laplacian operator.

The stress functions (P(x, y) are defined by

?

-V=2P | o_y=3

ayl rgxa
2

Qi} = - 2 99 (v=-7)
?x3)

From equations (V-7) and (V-5), the compatibility equation

becomes
v = "<"‘)’)»V2V + E[ @X} a_(;;xh:)(;;;)

H
Syl w2
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The equilibrium condition in the radial direction and
the equilibrium relations of moments are found by modifying

those given in [V—l] . These relations are:

+ ey 0x —3 + &0, —"—

+£'E‘-—-—=O (Vv=-9)

> Mx _DMX)'_QX—T:‘t:-_O (V-10)
> x Y 2

(V~11)
Qy DX .

. From equations (V-9), (V-10), and (V-11), the equilibrium

equation can be expressed as:

w o L, v Yw o g0 2w ]
DV“’:-&["?(?W" PSRy Sy

a
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The solution can be found from coupling equation (V-8)
with equation (V-12). It should be noted that these equations
are analogous to the thermoelastic problems of thin cylindrical
shells. When the shear T is constant, when the effect due
to 7?2 [see equation (v—1oﬂ is neglected, and when the
radial deflection is small, the pfbblem becomes the one

solved in [V-Z] .
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